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Human decision-making almost always takes place under time
pressure. When people are engaged in activities such as shopping,
driving, or playing chess, they have to continually balance the
demands for fast decisions against the demands for accurate
decisions. In the cognitive sciences, this balance is thought to be
modulated by a response threshold, the neural substrate of which
is currently subject to speculation. In a speed decision-making
experiment, we presented participants with cues that indicated
different requirements for response speed. Application of a math-
ematical model for the behavioral data confirmed that cueing for
speed lowered the response threshold. Functional neuroimaging
showed that cueing for speed activates the striatum and the
pre-supplementary motor area (pre-SMA), brain structures that are
part of a closed-loop motor circuit involved in the preparation of
voluntary action plans. Moreover, activation in the striatum is
known to release the motor system from global inhibition, thereby
facilitating faster but possibly premature actions. Finally, the data
show that individual variation in the activation of striatum and
pre-SMA is selectively associated with individual variation in the
amplitude of the adjustments in the response threshold estimated
by the mathematical model. These results demonstrate that when
people have to make decisions under time pressure their striatum
and pre-SMA show increased levels of activation.

basal ganglia � fMRI � linear ballistic accumulator model �
speed-accuracy tradeoff

Whether buying new shoes, participating in traffic, playing
chess, or shooting basketball, one invariably faces the

dilemma of when to stop deliberating and make a decision. In
many situations, it is maladaptive to ponder over alternative
courses of action for a very long time. In basketball, for instance,
one has to shoot the ball before a defender can block the shot.
However, decisions taken without sufficient thought may lead to
poor results; a shot that is taken too hastily may not go in.

The foregoing example shows that decision-making involves a
delicate balance between the competing demands of response
speed and choice accuracy, a balance that is usually referred to
as the speed–accuracy tradeoff (1). In the cognitive sciences, this
tradeoff is thought to be modulated by a response threshold that
determines the amount of diagnostic information that is required
to make a decision and initiate an action (2, 3). Because the
accumulation of diagnostic information takes time, high re-
sponse thresholds lead to accurate, yet slow, decisions, and low
response thresholds lead to fast yet error-prone decisions.

The behavioral consequences of the speed–accuracy tradeoff
are both profound and predictable, and the tradeoff therefore
constitutes one of the most important benchmark findings for
formal models of decision-making (4, 5). In light of its ubiquity
and impact, it is surprising that relatively little is known about the
neural underpinnings of the speed–accuracy tradeoff (but see
refs. 6 and 7). Despite a lack of empirical research, there is a lot
of speculation that the basal ganglia may be critical to the
speed–accuracy tradeoff (8–12). In their default state, the output

nuclei of the basal ganglia (i.e., the globus pallidus interna and
the substantia nigra pars reticularis) send tonic inhibition to the
thalamus, midbrain, and brainstem, preventing the premature
execution of any action (13, 14). When cortical processes start to
favor a certain course of action, it leads to activation of input
nuclei of the basal ganglia (i.e., the striatum, consisting mainly
of putamen and caudate), which, in turn, leads to selective
suppression of the output nuclei, releasing the brain from
inhibition and allowing the action to be executed (15).

Thus, the basal ganglia are thought to implement a generic
action–selection mechanism that releases from inhibition those
actions that are desirable and maintains inhibitory control over
all others. The key hypothesis that is shared by recent neuro-
computational models of decision-making (8–12) is that when
people have to make decisions under time pressure the basal
ganglia lessen their inhibitory control over the brain in a
nonspecific fashion, thereby generally facilitating fast, but pos-
sibly premature, responses.

The goal of this article is to explore the neural correlates of
decision-making under time pressure and test the widely held
hypothesis that the basal ganglia modulate the speed–accuracy
tradeoff. To this end, we experimentally manipulated the speed–
accuracy balance in a speeded-up decision-making task and
fitted a mathematical model to the behavioral data. Based on
individual differences in the response threshold parameter of
this model, functional neuroimaging data revealed that the
striatum is involved in the process of setting the response
threshold.

Results
In an experiment that consisted of a behavioral session and an
fMRI session, 19 participants performed a standard ‘‘moving
dots task’’ (16). This task requires a manual response to indicate
whether a cloud of moving dots appears to move to the left or
the right. Before each stimulus, a pseudorandomly presented cue
indicated the level of speed stress: fast, accurate, or neutral (Fig.
1). After each response, participants received feedback consis-
tent with the previously presented cue. In the speed and neutral
conditions, participants saw the message ‘‘too slow’’ whenever
they exceeded a response time criterion of 450 and 750 ms,
respectively. In the neutral and accuracy conditions, participants
saw the message ‘‘incorrect’’ whenever they made an incorrect
response. This feedback procedure provided additional incentive
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for participants to adopt different levels of response caution in
response to the different cues.

We used the trial-by-trial cuing procedure because it makes it
possible to selectively focus on the brain areas that are involved
in the setting of the response threshold. A more traditional
procedure would cue entire blocks of trials (i.e., an uninter-
rupted sequence of trials under speed stress, followed by an
uninterrupted sequence of trials under accuracy stress), but it
would be less appropriate for fMRI, because it would confound
the process of setting response thresholds with those involved in
processing the stimulus, executing the response, processing
feedback, and monitoring performance. For instance, under
speed–stress participants make relatively many errors and ac-
tively process the stimulus for a relatively short time; blocking the
trials would introduce confounds caused by differences in the
processing of error feedback and differences in the extent of
active processing of the stimulus.

Behavioral Data. Fig. 2A summarizes the behavioral data. We
obtained the typical pattern of speed–accuracy results: under
instructions to respond more quickly, response time was shorter
at the cost of more errors. This effect is most pronounced for the
transition to the speed condition, that is, behavioral data from
the neutral condition are quite similar to those from the accurate
condition, but neither of these conditions is behaviorally similar
to the speed condition. Note that accuracy in the speed condition
is still well above chance, showing that participants did not resort
to fast guessing.

fMRI Data. Fig. 3A shows the conjunction of 2 fMRI contrasts:
speed vs. accuracy and speed vs. neutral. Whereas in logic a
conjunction is defined as an AND between truth statements, in
neuroimaging a conjunction refers to activation caused by task
X AND by task Y (17). Thus, our conjunction analysis identifies
those brain areas that are active both in the speed vs. accuracy
contrast and in the speed vs. neutral contrast. Details of the
individual contrasts are provided in supporting information (SI)
Table S1. The conjunction analysis reveals focused, highly
reliable (P �.001, corrected for multiple comparisons at the
cluster level) activation in the right anterior striatum and the
right pre-supplementary motor area (pre-SMA). Note that the
fMRI contrasts are based on the activation elicited by the cue,
which means that the focus is entirely on preparatory processes
initiated by the presentation of the cue. The later processes

initiated by the presentation of the stimulus and the feedback are
not the focus of this work and are not reflected in the contrasts.
Details of the fMRI procedure and analyses can be found in SI
Text.

Thus, our fMRI results suggest that preparation for fast action
involves the anterior striatum and the pre-SMA. This conclusion
is in line with neuro-anatomical work that shows these brain
structures to be part of a closed-loop motor circuit that is
involved in preparation and updating of plans for future actions
that are under voluntary control (18–20).

Mathematical Model for Response Speed and Accuracy. These initial
conclusions were strengthened when the data were interpreted
by using a mathematical model for cognitive decision-making,
the linear ballistic accumulator (LBA) model (21) (see Materials
and Methods for additional details). Recall that each time
participants were presented with a stimulus they were required
to choose 1 of 2 response options. The LBA model represents

Fig. 1. Paradigm outline. Moving dots paradigm with cues emphasizing
speed (SN for schnell), both speed and accuracy, that is, neutral (NE) and
accuracy (AK for akkurat).

Fig. 2. Behavioral data, LBA model, and LBA model fits. (A) Behavioral
results. Cueing for speed leads to decrease in response time and an increase in
errors. (B) In the LBA model, the decision to respond either left or right is
modeled as a race between 2 accumulators. Activation in each accumulator
begins at a random point between zero and A and increases with time. The
rate of increase is random from trial to trial, but is (on average) faster for the
accumulator whose associated response matches the stimulus. A response is
given by whichever accumulator first reaches the threshold b, and the pre-
dicted response time depends on the time taken to reach that threshold. (C)
Model fit. Quantiles estimated from data (circles) and predicted by the LBA
model (crosses with lines). Data are shown from 3 different response caution
conditions. The upper lines and symbols show quantile estimates for correct
responses, and the lower set are for incorrect responses. The data and model
predictions were averaged across participants and across left vs. right stimuli.
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this choice as a race between 2 independent accumulators,
illustrated in Fig. 2B. On each trial, the 2 accumulators begin
with random activation values drawn from independent uniform
distributions on [0,A]. After the stimulus is presented, activation
increases in each accumulator at a rate that depends on the
stimulus. For example, activation will generally increase quickly
in the accumulator that corresponds to the correct response, but
slowly in the accumulator that corresponds to the incorrect
response. A response is triggered whenever the first accumulator
reaches a fixed response threshold b. Thus, for any decision the
observed response time is directly related to the time that the
accumulators require to reach the threshold.

For parameter estimation, we used a constrained model in
which response threshold b was the only parameter free to vary
across cue conditions. We tried many other ways of constraining
parameters, but settled on this simple scheme after considering
the Bayesian Information Criterion for each design (see SI Text
for details).

Fig. 2C shows that the model fits the data well, using a more
complete way of illustrating the data than Fig. 2 A. Instead of
mean response times and error rates, this time we summarize the
full response time distributions separately for correct and incor-
rect responses in each condition. Each distribution is summa-
rized by using 5 quantile estimates that estimate the associated
cumulative distribution functions. For each distribution, the
slowest symbol (far right in Fig. 2C) represents the 90% quantile,
the response time below which 90% of the data fall. In Fig. 2C,
the next rightmost symbol represents the 70% quantile, the
middle symbol represents the 50% quantile, which is just the
median, and the leftmost symbols represent the 30% and 10%
quantiles.

In Fig. 2C, the x axis shows the response time for the quantile
estimates, and the y axis shows the associated proportion of data,
which makes the graphs into defective cumulative distribution
functions, which are commonly used in response time analysis
(22). For example, in Fig. 2C Left (for data from the accuracy–
emphasis condition) the 50% quantile (median) for correct
responses was 493 ms. Overall accuracy in that condition was
87%. Half of the correct response times fall below the 50%

quantile, therefore 43.5% of all response times fall below this
value, so the data point is plotted at (x � 493, y � 0.435).

The quantile estimates support very detailed inspection of the
data. For example, in the speed emphasis condition (Fig. 2C
Right) the quantile estimates for the incorrect response times
were all faster than the corresponding quantile estimates for
correct response times, which replicates the usual finding that
errors are fast, when speed is stressed (23). When accuracy was
stressed, error response times tended to be about equal to correct
response times, but also a little more variable (there was greater
separation between the quantile estimates).

Comparison of the data (circles in Fig. 2C) with model
predictions (lines and crosses in Fig. 2C) shows that the model
fits the data very well. The predicted response probabilities are
within 2.1% of the observed values for all conditions, and the
predicted response quantiles for correct responses are always
within 17 ms of the observed quantiles. Thus, application of the
LBA model confirms that the behavioral effects of the experi-
mental manipulation can be entirely accounted for by a change
in the response threshold.

Individual Differences. Finally, and crucially, we combined the
results from the mathematical modeling and the fMRI measure-
ments (24) and correlated the LBA model parameters derived
for each individual with the percentage signal change from both
the anterior striatum and pre-SMA (see also SI Text). Specifi-
cally, for each participant and cue condition we calculated the
ratio b/A as a measure of response caution. For consistency, we
calculated contrasts between parameter estimates in the same
way as for the fMRI data. Fig. 3B shows a significant negative
correlation between the individual changes in the LBA measure
for response caution and the individual percentage signal change
derived from the right anterior striatum. Fig. 3C shows the same
result for the right pre-SMA. In other words, when put under
pressure to respond quickly, some participants adjust their
response thresholds more than others. Those participants who
have a relatively large decrease in response caution b/A also have
a relatively large increase in activation for the right anterior
striatum and right pre-SMA. The correlations between response
caution b/A and anterior striatum and pre-SMA decrease some-
what when the datum with the highest percentage signal change
is excluded (i.e., to r � �0.48 and �0.64, respectively), but the
results remain statistically significant (i.e., both P � 0.05).

We obtained almost identical results when we used a diffusion
model (25) to account for the data; specifically, the correlation
between EZ boundary separation variable and the hemodynamic
response was r � �0.41 for the anterior striatum and �0.62 for
the pre-SMA (both P � 0.05). This correspondence shows that
our theoretical results generalize across different mathematical
models.

The advantages of incorporating in the fMRI analysis the
parameters of a mathematical model (instead of more direct
summaries of the observed data) are further underscored when
one considers the selective nature of the association between
individual differences in the hemodynamic response and those in
the response caution measure derived from the LBA model. For
instance, the association between the hemodynamic response
and LBA response caution is much more consistent than the
association between the hemodynamic response and mean re-
sponse time or proportion correct; in fact, for the latter 2
measures the only significant relation was between proportion
correct and activation in the pre-SMA (r � �0.59, P � 0.007).
Also, individual differences in parameters of the LBA model
other than response caution (e.g., drift rate) did not correlate
with individual differences in the hemodynamic response, fur-
ther attesting to the selectivity of the association reported in Fig.
3 B and C.

Fig. 3. Conjunction and correlation analyses. Activation maps averaged over
19 participants mapped onto an individual brain. Red labels indicate positive
Z values. Coordinates are given in Talairach space. (A) Activation elicited in the
conjunction analysis of both Speed vs. Accuracy and Speed vs. Neutral. (B)
Association between the individual percent signal changes derived from the
right anterior striatum and the individual changes in the LBA measure for
response caution. (C) Association between the individual percent signal
changes derived from the right pre-SMA and the individual changes in the LBA
measure for response caution.
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Discussion
Our fMRI analysis showed that when people make decisions
under time pressure, it is accompanied by a focused activation in
anterior striatum and pre-SMA. The cognitive interpretation of
this result was corroborated by fitting the LBA model to the data
and demonstrating an association between the LBA model
parameters and individuals’ hemodynamic responses. These
findings confirm that the striatum is instrumental in adjusting
response caution, an assumption from several neuro-
computational models of decision-making that has so far evaded
experimental scrutiny. Our results are particularly consistent
with the model of Lo and Wang (12), who have argued that, in
an oculomotor task, time pressure causes an increase in activa-
tion in the striatum, which then acts to disinhibit the oculomotor
action execution system.

Our results are also partly consistent with recent work by
Ivanoff et al. (6) and van Veen et al. (7). Ivanoff et al. reported
that speed emphasis leads to activation in striatum and pre-SMA
and in more frontal areas. Van Veen et al. also reported
activation of many brain areas, including the striatum, premotor
areas of the frontal lobe, and the dorsolateral prefrontal and left
parietal cortices. The differences between these results and ours
may be caused by differences in task, design, computational
modeling, and research focus. We tentatively suggest that the
relatively broad activation patterns in prefrontal cortex could
come about through the use of a suboptimal procedure in which
cues precede not just single trials, but entire blocks of trials.

The basal ganglia is a complicated brain structure that is
important for reinforcement learning (26), voluntary motor
behavior (27), and motor dysfunctions associated with Parkin-
son’s and Huntington’s disease (28). The connections between
the pre-SMA and the basal ganglia, more specifically the anterior
striatum, render this circuit optimally suitable for modulating
action readiness. Accordingly, our work suggests that the stria-
tum, in interaction with the pre-SMA, may also be important in
the crucial everyday task of maintaining a balance between fast
decisions and accurate decisions.

Materials and Methods
Participants. Twenty healthy volunteers participated for a small monetary
reward of 8 euros. All participants signed a consent form before the scanning
session. All participants had normal or corrected-to-normal vision, and none
of them had a history of neurological, major medical, or psychiatric disorders.
The data of 1 participant were excluded from the analysis because of move-
ment. The remaining 19 participants (10 women, median age � 25.5, SD age �
3.08) were all right-handed, as confirmed by the Edinburgh Inventory (29).

Behavioral Task. In the present study we used the moving-dots task, popular
in neuroscience and research with primates (16); for an overview see ref. 30.
Participants were required to decide whether a cloud of dots appeared to
move to the left or to the right (Fig. 1). Of 120 dots, 60% moved coherently,
and 40% moved randomly. Participants indicated their response by pressing 1
of 2 spatially compatible buttons with their left or right index finger. A cue (SN
for schnell, i.e., fast; NE for neutral; and AK for accurate) instructed partici-
pants to adopt different levels of cautiousness on a trial-by-trial basis. The cues
were pseudorandomly intermixed. At the end of each trial, participants
received feedback that depended on the previously presented cue. In the
speed and neutral conditions, participants saw the message ‘‘zu langsam’’ (too
slow) whenever they exceeded a response time criterion of 450 and 750 ms,
respectively. In the neutral and accuracy conditions, participants saw the
message ‘‘falsch’’ (incorrect) whenever they made an incorrect response. This
feedback procedure provided an additional incentive for participants to
adopt different levels of response caution in response to the different cues.

Timing of fMRI Experiment. The timing of the sequence of trials was triggered
from the MRI control every 10 s. The trials started with a variable oversampling
interval of 0, 500, 1,000, or 1,500 ms to obtain an interpolated temporal
resolution of 500 ms. During the variable oversampling interval a fixation cross
was presented. Participants were asked to maintain fixation. Then 1 of the 3
cues was presented in the middle of the screen for 4,800 ms (Fig. 1). Cue

presentation was followed by a jittered interval between 0 and 1,500 ms in
steps of 500 ms. The imperative stimulus (i.e., the moving dot pattern) was
presented for 1,500 ms and followed by 350 ms of feedback.

The experiment consisted of 240 trials including 24 null events that were
pseudorandomly interspersed. The null events were included to compensate
for the overlap of the bloodoxygenation level-dependent response between
adjacent trials. The experiment lasted �40 min. Every block started out with
2 dummy trials that were excluded from further analysis.

Details of the fMRI procedure and analyses can be found in SI Text.

Behavioral Session for the Estimation of Response Threshold. Two days before
the scanning session, each participant performed the task outside the MRI
scanner for �40 min. This process yielded sufficient data for the reliable
estimation of the response boundary thresholds by using the LBA model as
described. The trial timing of the task for this behavioral session was modified
to maximize the number of observations, i.e., the cue–stimulus interval was set
to 500 ms and there was no variable jitter at the beginning of the trial.
Moreover, cue and stimulus were each presented for 1,000 ms, and there were
no null events interspersed. The behavioral session features a total of 840
trials, equally distributed over the 3 conditions.

Analysis Using a Mathematical Model for Response Speed and Accuracy. We
analyzed the data by using the LBA model (21). The data were also analyzed
with the EZ-diffusion model (25), yielding qualitatively identical results. Each
time participants were presented with a stimulus, they were required to
choose 1 of 2 response options, either left or right. The LBA model represents
this choice as a race between 2 independent accumulators, illustrated in Fig.
2B. On each trial, the 2 accumulators begin with random activation values
drawn from independent uniform distributions on [0,A]. After the stimulus is
presented, activation increases in each accumulator at a rate of d units per
millisecond, where we call d the drift rate. The drift rate is a random sample
from a normal distribution, with variance s2 and a mean value that depends on
the stimulus (for example, the drift rate for the accumulator that responds left
will be large when the stimulus strongly suggests that response, and small
when the stimulus suggests the other response). A response is triggered
whenever the first accumulator reaches a fixed response threshold, b, and the
time taken for that response is the time taken to reach the threshold plus a
constant offset time t0.

The predicted response time distributions and associated response proba-
bilities for the LBA can be specified in closed forms (21) and used to calculate
likelihood functions when fitting the model to data from the behavioral phase
of the experiment. We performed similar analyses on the entire dataset,
including data collected in the magnet. The results were similar, but noisier
because of increased response variability in the scanner; in particular, there
were many anticipatory responses. To fit the data, we first removed observa-
tions with response times �250 ms on the grounds that these observations
were unlikely to have arisen from the decision process of interest. This trim-
ming resulted in the removal of 105 observations, or only 0.3% of the data. We
then estimated response time quantiles corresponding to 0.1, 0.3, 0.5, 0.7, and
0.9 cumulative probabilities. The response time quantile corresponding to,
say, probability 0.7 is just that response time below which 70% of the data fall,
and these quantiles can be used to succinctly describe response time distribu-
tions. We calculated the 5 quantile estimates separately for each participant
in 12 experimental conditions (3 response caution conditions crossed with 2
responses and 2 stimuli). For fixed model parameters, the probability mass
predicted by the LBA model for each interquantile bin was computed, and
they were combined by using the quantile maximum product method (31, 32).
The parameters were then adjusted to maximize the probability product,
independently for each participant, using the simplex algorithm (33).

For a decision between 2 responses, the LBA model appears to have 7
parameters: t0, A, b, and means and standard deviations for the drift rate
distributions for both left (dL and sL) and right (dR and sR) responses. For
reasons of plausibility and parsimony, we limited these parameters consider-
ably. We constrained the offset time (t0) and the range of the start point
distribution (A) to be fixed across all conditions, and we allowed the response
threshold (b) to vary only with response caution. For a given stimulus class (left
or right) we used an identical standard deviation for the drift rate distributions
for both responses (left and right) and constrained the means of the drift rate
distributions to add to one.

The value of 1 was chosen arbitrarily, to enforce a scaling property of the
LBA model. This process resulted in 2 free parameters for drift rates, d and s,
which we estimated separately for left-moving and right-moving stimuli.
These constraints allowed the model to predict the 12 separate distributions
of response times by using just 9 free parameters: t0, A, bS, bA, bN (for speed,
accuracy, and neutral conditions), and dL, sL, dR, sR (for left and right stimuli).
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We tried many other designs for constraining parameters, such as allowing t0

to vary with response caution or fixing the drift rate parameters across
stimulus classes. All reasonable designs resulted in similar goodness-of-fit for
the model and in qualitatively consistent results for parameter analyses.

Fig. 2C shows that the model fits the data very well. The predicted response
probabilities are within 2.1% of the observed values for all conditions. The
response quantiles predicted by the model are within 17 ms of the observed
quantiles for all distributions associated with correct responses (see Results).
The misses are larger for distributions associated with incorrect responses, up
to 106 ms, primarily because the data for incorrect responses were fewer and
more variable than for correct responses. The model also captures all of the
important qualitative trends in the data. For example, both correct and
incorrect response time distributions are faster (closer to the left) in the speed
condition than in the other 2 response caution conditions. Also, the response
accuracy is lower in the speed condition than in the other 2 conditions (in Fig.
2C the y-axis probabilities for the 2 distributions in the speed condition are
closer together than in the other conditions).

The LBA model captures response caution through the relative sizes of the
response threshold (b) and the upper end of the distribution of starting points
(A). When the response threshold is set close to start point distribution (i.e.,
when b � A) responses are very fast, but are often incorrect. However, when

b �� A, the model predicts longer accumulation times and so there is a reduced
effect of different starting points for the accumulators, which leads to greater
accuracy at the expense of slower responses. As a measure of response caution,
we calculated the ratio b/A separately for each participant and separately for
the 3 response caution conditions. The means (and standard errors) for these
were 1.66 (0.072), 1.54 (0.069), and 1.17 (0.057) in the accuracy, neutral, and
speed conditions, respectively. The increase in response caution when moving
from speed emphasis to neutral and accuracy emphasis conditions confirms
that the experimental condition had the desired effect. The relative similarity
of the response caution measures in the neutral and accuracy conditions
confirms the conclusion we drew from the descriptive analyses; that partici-
pants treated these 2 conditions similarly. Therefore, and for consistency,
when comparing our model analyses with fMRI data, we averaged the esti-
mates from the accuracy and neutral conditions and made a single contrast,
subtracting the response caution measure in the combined conditions from
the response caution measure in the speed condition.
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